Dynamic control of protein folding pathway with a polymer of tunable hydrophobicity.

نویسندگان

  • Diannan Lu
  • Jianzhong Wu
  • Zheng Liu
چکیده

While the knowledge of protein folding in a dilute solution is now well-advanced, little is known of the influence of surrounding conditions on the folding kinetics, in particular when the protein is in a dynamically responsive environment. Here we report a new procedure to control the pathways of protein folding by using a thermally responsive polymer that varies its hydrophobicity concomitant with the protein structural changes. The advantages of folding in a dynamic environment have been demonstrated first by Langevin dynamics simulations on the basis of coarse-grained models for both the protein and polymer and then by experiments for lysozyme refolding in the presence of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide), a thermal responsive polymer that varies its hydrophobicity in response to temperature. The simulation suggests that decreasing the polymer hydrophobicity during the folding process may result in an optimized free-energy landscape that enhances both the folding yield and kinetics. The experiments affirm that an optimal folding condition can be identified when structural transitions of the protein collaborate with the polymer hydrophobicity tuned by variation of temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway.

Recent experiments suggest that the folding of certain proteins can take place entirely within a chaperonin-like cavity. These substrate proteins experience folding rate enhancements without undergoing multiple rounds of ATP-induced binding and release from the chaperonin. Rather, they undergo only a single binding event, followed by sequestration into the chaperonin cage. The present work uses...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...

متن کامل

Folding pathway of a lattice model for protein folding

The folding of a protein-like heteropolymer is studied by direct simulation of a lattice model that folds rapidly to a well-defined “native” structure. The details of each molecular folding event depend on the random initial conformation as well as the random thermal fluctuations of the polymer. By analysing the statistical properties of hundreds of folding events, a classical folding “pathway”...

متن کامل

Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 111 42  شماره 

صفحات  -

تاریخ انتشار 2007